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ABSTRACT

Proper scoring rules provide a theoretically principled framework for the quantitative assessment of the

predictive performance of probabilistic forecasts. While a wide selection of such scoring rules for univariate

quantities exists, there are only few scoring rules for multivariate quantities, and many of them require that

forecasts are given in the form of a probability density function. The energy score, a multivariate general-

ization of the continuous ranked probability score, is the only commonly used score that is applicable in the

important case of ensemble forecasts, where the multivariate predictive distribution is represented by a finite

sample. Unfortunately, its ability to detect incorrectly specified correlations between the components of the

multivariate quantity is somewhat limited. In this paper the authors present an alternative class of proper

scoring rules based on the geostatistical concept of variograms. The sensitivity of these variogram-based

scoring rules to incorrectly predicted means, variances, and correlations is studied in a number of examples

with simulated observations and forecasts; they are shown to be distinctly more discriminative with respect to

the correlation structure. This conclusion is confirmed in a case study with postprocessed wind speed forecasts

at five wind park locations in Colorado.

1. Introduction

During the last two decades a paradigm shift has oc-

curred in the practice of numerical weather prediction

(NWP). To account for the various sources of uncertainty

in the NWP model output, ensemble prediction systems

were developed and have now become state of the art in

meteorological forecasting (Buizza et al. 2005; Lewis

2005; Leutbecher and Palmer 2008). Those ensemble

forecasts aim to represent the range of possible outcomes,

and probabilistic statements like the probability of ex-

ceeding a certain amount of precipitation can be derived

from them and help making informed decisions.

Along with the availability of probabilistic forecasts

comes the need for both diagnostic and quantitative

methods to assess the quality of those forecasts and to

compare the performance of competing forecasters. A

probabilistic forecast should be calibrated (i.e., statisti-

cally consistent with the values thatmaterialize) and sharp

(i.e., very specific about the anticipated weather; Gneiting

et al. 2007). Sharpness can be assessed via numerical and

graphical summaries of the width of the prediction in-

tervals that come with a predictive probability distribu-

tion. The notion of calibration is more complex, and

different types of calibration have been established.

Marginal calibration measures the similarity of the ag-

gregated predictive distribution and the climatological

distribution of the predictand, and can be checked by

comparing the average predictive cumulative distribution

function (CDF) with the empirical CDF of the observa-

tions (Gneiting et al. 2007). Probabilistic calibration con-

cerns the dynamical aspects of probabilistic forecasts and

can be assessed by studying verification rank histograms

(Anderson 1996; Hamill and Colucci 1997; Hamill 2001).

To make a quantitative comparison of different

forecast methods, summary measures of their predictive

performance are required. Those measures should take

both calibration and sharpness into account. To this

end, scoring rules have been proposed which assign

a numerical score S(F, y) to each pair (F, y) where F is

the CDF of the predictive distribution and y is the
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realized value. If we take scoring rules to be negatively

oriented, S(F, y) can be viewed as a penalty that the

forecasters wish to minimize. A crucial property that

one should always require from a scoring rule is that it is

proper, which is formally defined by the requirement

EGS(G,Y)#EGS(F,Y) " F,G , (1)

where EG S(F, Y) denotes the expected score of the

forecast CDF F when the verifying observations y are

realizations of a random variable Y with CDF G, and "
means ‘‘for all.’’ The score is strictly proper if the

equality holds only if F5G (Gneiting and Raftery

2007). Using only proper scoring rules is important in

practice because the above inequality implies that

a forecaster who knows the true distribution G has no

incentive to predict any F 6¼ G, and is encouraged to

quote her true belief. It has been demonstrated that the

use of improper scores can lead to misguided inferences

about predictive performance (Gneiting 2011).

The notions and methods mentioned above refer to

probabilistic forecasts of univariate quantities. In some

applications, however, multivariate quantities are of

interest where multivariate can either refer to several

different weather variables, or to a single variable con-

sidered at different locations in space or points in time

simultaneously. River basin streamflow forecasts, for

example, rely heavily on the meteorological inputs, and

the runoff of mountain streams in spring season depends

on both temperature (because of its impact on the

amount of meltwater) and precipitation amounts. It is

therefore important to know if an observed temperature

above the predictive mean is likely to be associated with

observed precipitation amounts above the predictive

mean. If there is a positive or negative association be-

tween those two variables it should be reflected by the

joint probabilistic forecast. Moreover, simultaneous

consideration of all locations in the river basin and

several lead times may be required. A recent article by

Wilks (2014) considers probabilistic forecasting of heat

waves, which requires the simultaneous study of mini-

mum temperature and dewpoint temperature at two

consecutive days, and Feldmann et al. (2015) study sta-

tistical postprocessing methods that yield calibrated

temperature forecasts simultaneously at several loca-

tions. A number of multivariate generalizations of the

verification rank histogram have been proposed (Smith

and Hansen 2004; Wilks 2004; Gneiting et al. 2008;

Thorarinsdottir et al. 2015; Ziegel and Gneiting 2014)

that are sensitive to misrepresentations of both univar-

iate characteristics and correlations between the differ-

ent components of the multivariate quantity under

consideration.

As far as proper scoring rules are concerned, the

forecast verification toolbox is still rather limited. On

the one hand there is the energy score (ES) and gener-

alizations of it (Gneiting and Raftery 2007):

Sen(F, y)5EFkX2 yk2 1

2
EFkX2X0k ,

where X and X0 are independent random vectors that

are distributed according to the multivariate CDF F and

k�k is the Euclidean norm. The energy score has the

appealing property that it generalizes the univariate

continuous ranked probability score (CRPS; Hersbach

2000) and is readily applicable also to ensemble fore-

casts. It has been pointed out, however, that this score is

often not sufficiently sensitive to misspecifications of the

correlations between the different components (Pinson

and Girard 2012; Pinson and Tastu 2013). This is a big

drawback since unlike the means and variances those

correlations cannot be studied by applying univariate

scores to the individual components. On the other hand,

there are scoring rules [e.g., the logarithmic score by

Roulston and Smith (2002), applied to a multivariate

probability density function] that are more sensitive to

misspecified correlations, but require that the forecast is

given in terms of a predictive density, and are thus not

applicable in the important case of ensemble forecasts.

Dawid and Sebastiani (1999) proposed some multivariate

scoring rules that depend only on the mean vector mF and

the covariancematrixSF of the predictive distributionF.A

particularly appealing example is the scoring rule [hereaf-

ter referred to as the Dawid–Sebastiani score (DSS)]:

SDS(F, y)5 log detSF 1 (y2mF)
0S21

F (y2mF) .

It is equivalent to the logarithmic score for multivariate

Gaussian predictive distributions and remains a proper

(though not strictly proper) score relative to the larger

class probability distributions for which the second

moments of all components are finite (Gneiting and

Raftery 2007). In principle this score could be applied to

empirical versions of mF and SF that were estimated

from an ensemble, but unless the sample size is much

larger than the dimension of the multivariate quantity,

sampling errors can have disastrous effects on the cal-

culation of detSF and S21
F , and render this score useless

in the context of ensemble forecasting (see e.g., Table 2

in Feldmann et al. 2015). Accordingly, in section 2 we

propose a new, proper, multivariate score that is based

on pairwise differences between all components of the

multivariate quantity and that we hypothesize is more

readily usable for ensemble forecast diagnosis. Some

simulation examples are presented in section 3. These
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will demonstrate that this new score is sensitive to mis-

specified correlations between the different components,

and that it is useful for ensemble forecast diagnosis even

when the number of ensemble members is moderate. An

application of the new score in the context of probabilistic

wind speed forecasting at several locations in Colorado

simultaneously is presented in section 4, before we con-

clude with a short discussion in section 5.

2. A scoring rule based on pairwise differences

The basic idea of the class of multivariate scoring rules

proposed in the following is to consider pairwise dif-

ferences of the components of the multivariate quantity

of interest. This has already been suggested in the con-

text of rank histograms (e.g., Fig. 5 in Hamill 2001) and

recently been utilized by Feldmann et al. (2015) in a di-

agnostic plot to check the adequacy of a statistical model

for spatial correlations. Denote by y the vector of ob-

servations, by yi its ith component, and assume that y is

a realization of the random vector Y. Adopting the

concept of a variogram (also referred to as structure

function) from geostatistics we study the quantity

g2(i, j)5
1

2
EjYi 2Yjj2 ,

where E denotes the expectation under the (multivari-

ate) distribution of Y, which is assumed to have finite

second moments. Denoting mi :5E(Yi), s
2
i :5 var(Yi)

and rij :5 corr(Yi, Yj) we have

EjYi2Yjj2 5 (mi 2mj)
21 (s2

i 2 2sisjrij 1s2
j ) , (2)

which shows that g2 depends not only on the first and

second moments of the individual components, but also

on their correlations. More generally, one can consider

variograms of order p. 0:

gp(i, j)5
1

2
EjYi 2Yjjp .

The special cases p5 1 and p5 0:5 are known as

madogram and rodogram, respectively (Bruno and

Raspa 1989; Emery 2005). Variograms of order p can be

defined for anymultivariate distribution for which the pth

absolute moments exist. For p 6¼ 2 and non-Gaussian

distributions they can usually not be expressed as simple

functions of the means, variances, and correlations of Yi

andYj, but they still depend on all of those quantities, and

are therefore potentially useful for comparing the multi-

variate dependence structure of forecasts and observa-

tions. While condensing the information about the

dependence of Yi and Yj into a single number gp(i, j)

implies a certain loss of information, we shall see that

utilizing these quantities in the framework of scoring

rules results in a performance measure that is sensitive to

various types of miscalibration of multivariate forecasts.

For a given d-variate observation vector y and forecast

distribution F we define the variogram score of order p

(VS-p):

Sg
p
(F, y)5 �

d

i,j51

wij(jyi 2 yjjp 2EF jXi 2Xjjp)2 , (3)

where Xi and Xj are the ith and the jth component of

a random vectorX that is distributed according to F, and

wij are nonnegative weights. The score Sgp
measures the

dissimilarity between approximations of the variograms

of order p of observations and forecasts over all pairs of

components of the quantity of interest. For the obser-

vations, our best guess of EjYi 2Yjjp is simply the

powered absolute difference of yi and yj. When the

forecast distribution is given in the form of an ensemble

x(1), . . . , x(m), the forecast variogramEF jXi 2Xjjp can be
approximated by

EF jXi 2Xjjp ’
1

m
�
m

k51

jx(k)i 2 x
(k)
j jp, i, j5 1, . . . ,d .

(4)

Pairs of squared variogram differences can be empha-

sized or downweighted through the choice of the

weights. This might be motivated by a subjective de-

cision of an expert to put focus on certain component

combinations. In a spatial context, for example, the

possibility of emphasizing differences corresponding to

pairs of locations that are either close by or a certain

distance apart is related to the idea of scale-dependent

verification (e.g., Jung and Leutbecher 2008). Down-

weighting certain pairs can also help mitigating the ef-

fects of sampling error. To see this, assume for simplicity

that the random vector Y follows a multivariate

Gaussian distribution with identical mean in all com-

ponents. Defining s2
ij :5s2

i 2 2sisjrij 1s2
j we then have

EjYi 2Yjj15
ffiffiffiffi
2

p

r
sij , varjYi 2Yjj15

�
12

2

p

�
s2
ij

EjYi 2Yjj25s2
ij , varjYi 2Yjj25 2s4

ij .

This shows that in both cases, both magnitude and var-

iability of pairs of weakly correlated components are

higher than for strongly correlated components. The

former would therefore dominate the VS-p on the one

hand, and introduce more variability on the other hand,

which implies that downweighting pairs that are ex-

pected to have relatively weak correlations can benefit
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the signal-to-noise ratio. In situations where there is

some notion of distance between the ith and jth com-

ponent (e.g., time lag as in the examples in section 3 or

spatial distance as in section 4), correlations at short

distances are typically stronger than those at longer

distances. As a pragmatic ad hoc choice of the weights

we then suggest to let them be proportional to the in-

verse distances between the corresponding components.

This idea of downweighting certain pairs of components

is conceptually similar to covariance localization in data

assimilation (Houtekamer and Mitchell 2001; Hamill

et al. 2001), where elements in the empirical covariance

matrix that correspond to conceivably weakly or un-

correlated components are tapered down toward zero to

reduce the effects of sampling error. When the multi-

variate quantity consists of variables of different type

(e.g., temperature, pressure, and relative humidity),

there is no obvious notion of distance and even the

definition of Sgp
seems doubtful as we would be sub-

tracting quantities with potentially different units. In

that situation, one could apply Sgp
to standardized

components:

~yi :5
yi 2m

(cl)
i

s
(cl)
i

, ~Xi :5
Xi 2m

(cl)
i

s
(cl)
i

, i5 1, . . . ,d ,

where m
(cl)
i and s

(cl)
i are the climatological mean and

variance of the variables, respectively. This approach has

been suggested in multivariate geostatistics in the context

of variance-based cross variograms, which are the equiv-

alent of our score in the situation where components can

correspond to different variables. In the geostatistical

context it can be justified by the fact that predictors de-

rived from variance-based cross variograms do not de-

pend on the particular unit, and so the user should work

with standardized variables in order to minimize the ef-

fects of sampling error (Cressie andWikle 1998). In some

applications there might be better, more problem-specific

meteorological concepts to transformweather variables of

different type in a way that brings them all to a scale in

which they can be compared, one example being the total-

energy norm (e.g., Hamill et al. 2003).

Wenow show thatSgp
is proper relative to the class of the

probability distributions for which the (2p)th moments of

all components are finite. To see this, consider first a single

pair (i, j). For any such pair, the mean of the random var-

iable Zd jYi 2Yjjp minimizes the expected squared de-

viation of Z from any fixed number a 2 R, that is,

E[Z2E(Z)]2 #E(Z2 a)2 .

This means that the inequality in (1) holds separately for

any pair (i, j), but then it also holds for the weighted sum

over all pairs, for any choice of nonnegative weights.

Note, however, that the VS-p is not strictly proper be-

cause it only depends on the pth absolute moment of the

distribution of component differences, and can there-

fore not distinguish between distributions ofZ that have

the same pth absolute moment but different higher

moments. Moreover, large-scale random errors that are

the same for all components cancel out when differences

are considered; likewise, a bias that is the same for all

components will go undetected. The simulation study in

section 3 shows, however, that for suitable choices of p

the VS-p is quite sensitive to misspecifications of the

correlation structure of Y. More importantly, this is still

true when EF jXi 2Xjjp has to be estimated as in (4)

from an ensemble that represents the predictive distri-

bution F. This approximation introduces quite a bit of

additional sampling error, but the effects on the score’s

propriety and discrimination ability will be shown to be

much less severe as for theDawid–Sebastiani score. This

makes the VS-p a favorable score in the context of en-

semble forecasting, on which we focus in the rest of this

paper.

Before comparing it with the ES and DSS in simula-

tions, we shall mention that the VS-p can be viewed as

a special case of a much larger class of scoring rules.

Consider the mapping g
p,~w

:Rd /R
d2

defined by

[g
p,~w(y)]ij 5 ~wijjyi 2 yjjp, i, j5 1, . . . ,d ,

where ~w is the weight vector of the transformation g
p,~w

.

Choosing ~wij 5
ffiffiffiffiffiffi
wij

p
, we can rewrite theVS-p from (3) as

Sg
p

(F, y)5 �
d

i,j51

f[g
p,~w

(y)]ij 2EF [gp,~w(X)]ijg2 ,

which shows that the VS-p of a single, multivariate

forecast is (up to the factor 1/d2) the same as the mean

squared error (MSE) over the d2 components of the

transformed forecast vector. The generalization of the

VS-p is now obvious: instead of the MSE, we can apply

any other univariate scoring rule to the components of

g
p,~w

(X) and g
p,~w

(y), and take themeanover the resultingd2

values as an alternative score for our multivariate

quantity. Or, we can apply the ES to the d2-variate

vectors g
p,~w

(X) and g
p,~w

(y), rather than to X and y di-

rectly. These generalizations will also be studied in the

subsequent section.

3. Simulation study

We compare the energy score, the Dawid–Sebastiani

score, and the variogram score of order p5 0:5, 1, and 2,

using inverse distance weights as described above. In all
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experiments we generate n5 5000 observation vectors

of dimension d, and anm-member ensemble of forecast

vectors of the same dimension with both correct and

misspecified means, variances, or correlations. To un-

derstand the impact of representing the predictive dis-

tribution by an ensemble on the different scores, we

consider both small (m5 20) and medium-sized

(m5 100) ensembles. While a formal definition of be-

ing proper exists and allows one to check this property

mathematically, there does not seem to be a commonly

accepted measure of a scoring rule’s ability to discrimi-

nate between calibrated and uncalibrated forecasts. This

is an important characteristic though that determines its

utility for forecast verification in practice. In this simu-

lation study, we try to get some sense of the discrimi-

nation ability of the various scores by repeating each

experiment 10 times and visualizing the respective out-

comes by boxplots. Even though the scores are averaged

over 5000 cases, they still vary from one experiment to

another. If the group of average scores obtained with

calibrated forecasts is clearly separated from the one

obtained with uncalibrated forecasts, we will interpret

this as good discrimination ability of the scoring rule that

was utilized. Conversely, if there is a strong overlap of

the ranges of outcomes obtained with calibrated and

uncalibrated forecasts, we will conclude that the scoring

rule that produced these outcomes cannot reliably de-

tect this particular type of miscalibration.

a. Miscalibrated marginal distributions

Although we contend that multivariate verification

should focus on the correlations between the different

components (predictive means and variances can be com-

pared in a first stepwith univariate verification techniques),

we shall start with a first experiment that compares the

different scores with respect to their ability to detect biases

and over- or underdispersion of the forecasts. We already

noted that the VS-p is unable to detect a bias that is the

same for all components, but we can consider a situation

where this simple type of bias has been removed while an

erroneous trend is present in the forecast means. Specifi-

cally, let the observation vectors be realizations of

a Gaussian random vectorY of dimension d5 5 with zero

mean, unit variance, and correlation function:

corr(Yi,Yj)5 exp

�
2
ji2 jj
r

�
, i, j5 1, . . . ,d . (5)

In this experiment we take r5 3. If we associate each

component with a time point,Y can be viewed as a short,

stationary autoregressive AR(1) process. Note that the

definitions of all scores studied here neither exploit nor

rely on this property of stationarity. Moreover, since the

scores are calculated separately for each of the 5000

cases and averaged only afterward, they can also be

applied in situations where the distribution of the ob-

servation vector differs from one case to another. The

possibility of exploiting preliminary knowledge about

the multivariate dependence structure is further dis-

cussed in the second example below. To compare the

sensitivity of the different scores to misspecifications of

means and variances, we generate forecasts with the

same exponential correlation function as above and

1) correct variances but biased means: mF 5 (20:5,

20:25, 0; 0:25, 0:5)0;
2) correct means and variances;

3) correct means but too large variances: s2
i 5 1:5,

i5 1, . . . , 5; and

4) correct means but too small variances: s2
i 5 0:6667,

i5 1, . . . , 5.

The corresponding boxplots are shown in Fig. 1. We

note first of all that the influence of ensemble size is rather

different from one score to another. For the ES, there is

hardly any difference between m5 20 withm5 100. This

can be an advantage if only an ensemble of very small size

is available, but it also suggests that the ES cannot distin-

guish a very good representation of the predictive distri-

bution F from a very sparse one. This is different for the

VS-p values, which consistently improve with increasing

ensemble size, thus showing that the finite sample repre-

sentation of F does have a noticeable effect on the score.

This sampling effect, however, does not change the qual-

itative conclusions about the predictive performance of the

different forecasts (this is also true for the examples con-

sidered below). A really substantial change of the scores

due to the different finite representations of the predictive

distribution can be observed with the DSS (note the dif-

ferent scales form5 20 andm5 100). The approximation

of mF and SF by empirical means and covariances esti-

mated from the small ensemble is so poor that the resulting

scores lead to false conclusions about predictive perfor-

mance, favoring the overdispersive ensemble over the

calibrated one. For the larger ensemble, this score bias

due to insufficient representation of F plays a smaller

role, and the DSS discriminates well between the correct

and uncalibrated forecasts. The ES is very effective in

detecting the erroneous linear trend corresponding to the

forecasts simulated according to 1), but the separation

between the calibrated and over/underdispersive fore-

casts is less distinct. Among the different VS-p studied

here, the VS-p with p5 0:5 has clearly the best discrim-

ination ability. It identifies themiscalibration of themean

less clearly than the ES, but is more effective in detecting

over and underdispersiveness. The VS-p with p5 1 still

detects all types of miscalibration reasonably well. It is
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noticeable, however, that with increasing p the random

variations between scores obtained with identical setups

become larger and larger and blur the systematic differ-

ences between calibrated and uncalibrated forecasts.

Before we turn to the genuinely multivariate aspects we

would like to recall that the VS-p is not strictly proper. In

the present situation, for example, the effects of an er-

roneous trend and underdispersion can cancel out [for

p5 2 this can be seen directly from (2)]. We therefore

emphasize again that an analysis of the marginal distri-

butions by means of univariate scores should precede the

study of multivariate properties.

b. Misspecified correlation strength

In our second experiment we focus on the correlation

structure of the multivariate quantity under consideration.

We study the ability of the different scores to detectwhether

the correlations between the different components of the

forecast vectors are too weak, adequate, or too strong

compared to the corresponding correlations of the obser-

vation vectors. Moreover, we study the effect of increasing

the dimension from d5 5 to d5 15 on the different scores.

In both cases, we consider again a zero mean, unit variance

AR(1) processwith correlation function given in (5). For the

observation vectors, we choose r5 3 as before and compare

ensemble forecasts simulated with the same correlation

model, but r5 2, r5 3, and r5 4:5. The boxplots in Fig. 2

for the ES confirm the conclusion of Pinson and Tastu

(2013) that the ES can hardly discriminate multivariate

forecasts that differ only with respect to their correlations

between individual components. For the DSS the conclu-

sion is as in the first experiment. It discriminates well be-

tween calibrated and uncalibrated forecasts if the ensemble

that represents the predictive distribution is sufficiently

large. A small ensemble, however, results in an inaccurate

approximation of mF and SF , and the corresponding DSS

leads to misguided inference. This representation issue is

much less severe for the VS-p, and for p5 0:5 and p5 1 it

discriminates well between correct and incorrect correlation

strengths. For p5 2 the discrimination ability is still better

than for the ES but overall not very satisfactory with ran-

dom differences between identical setups having the same

magnitude as systematic score differences due to mis-

calibration. Increasing the dimension from d5 5 to d5 15

has a slightly negative effect on the discrimination ability of

the VS-p. This may be somewhat surprising since a larger

dimension entailsmore data that are used for the calculation

of Sgp
. However, since our definition of theVS-p in (3) does

not make any assumption (e.g., stationarity in a time series

or spatial context) about the correlation structure of fore-

casts and observations, increasing the number of summands

in (3) does not lead to an averaging of sampling error. If one

was absolutely sure that some additional structural as-

sumption is justified [i.e., that the set of all pairs (i, j) can be

represented as a union of disjoint subsets I1, . . . , IN such

that the component differences corresponding to thepairs in

each subset have the same pth absolutemoment], one could

replace definition (3) by

Sg
p

(F, y) :5 �
N

k51

wk

"
�

(i,j)2I
k

jyi2 yjjp 2 �
(i,j)2I

k

EF jXi 2Xjjp
#2

.

This way, additional structural information could be

exploited and an increase of d would then likely reduce

sampling error and improve the discrimination ability of

the score. In the present example, the simulated AR(1)

process is stationary and proceeding as described above

with Ik :5 [(i, j): ji2 jj5k] would be justified. In general,

however, such information is not available, and while

simplifying assumptions are common and appropriate in

FIG. 1. (from left to right) Energy, Dawid–Sebastiani, and variogram scores of order p 5 0.5, 1, and 2 for ensemble size m 5 20 and

m5 100. The boxplots corresponding to mean-biased, correct, over-, and underdispersive forecasts are cornflower blue, violet, light blue,

and dark blue, respectively. The boxes cover the first to third quartile of the 10 outcomes, the black line shows the median, and the

whiskers extend to the data extremes.
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statisticalmodeling, we contend that verificationmethods

should avoid unwarranted preliminary assumptions

about forecasts and observations as far as possible. We

therefore recommend retaining the definition in (3), even

though it is less favorable with respect to the VS-p’s dis-

crimination ability. The fact that the discrimination

ability in the present example even gets slightly worse

from d5 5 to d5 15 can probably be explained by the

fact that the fraction of pairs of components in Sgp
(F, y)

with rather weak correlations increases, and thus more

variability is introduced into the calculation of the score.

c. Misspecified correlation model

In the third experiment, we vary the entire correlation

model rather than just the correlation strength. We now

consider only the case d5 15 and simulate observations

with zero mean, unit variance, and correlation function:

(i) corr(Yi, Yj)5

�
11

ji2 jj
3

�21

, and

(ii) corr(Yi, Yj)

5 exp

�
2
ji2 jj
4

��
0:751 0:25 cos

�ji2 jjp
2

��
.

Both of them yield correlations at lag 1 that are very

similar to the exponential model in (5) with r5 3. Model

(i), however, has much stronger correlations at larger

lags, and model (ii) has a periodic component that

makes it oscillate around this exponential reference

model. Can the VS-p detect those differences between

the model in (5) and models (i) and (ii), respectively,

even though our proposed weighting scheme down-

weights larger lags? Figure 3 confirms many of the

conclusions from the preceding experiment. The ES

again lacks sensitivity to misspecifications of the corre-

lation structure while the VS-p distinguishes much bet-

ter between the correct and the incorrect correlation

model. Again, however, the discrimination ability de-

pends on p, with smaller values yielding significantly

better results. TheDSS has similar issues in this example

as in those discussed above. Their magnitude drops

dramatically when passing from 20 to 100 ensemble

members, although the underlying multivariate distri-

bution is the same. In the case where the observations

have long-range dependence, both ensemble sizes are

insufficient to reduce this score’s representation bias

enough to yield the proper ranking between correct and

incorrect forecasts. In the example with the oscillating

correlation model, the DSS yields the correct ranking

and separates the two cases very well. However, it may

well be that this is simply an example where the bias due

to the finite representation of the predictive distribution

favors the correct ranking by chance.

d. Misspecified generating process

When we introduced the VS-p in section 2, we em-

phasized that this family of scoring rules is proper, but not

strictly proper. It is based only on the pth absolute mo-

ment of differences between all pairs of components. It

is clear that biases that are the same for all components

cancel out. It is also clear that certain combinations of

FIG. 2. As in Fig. 1, but for forecasts with too weak (light blue), adequate (violet), and too strong (dark blue) correlations compared to the

observations for (top) d 5 5 and (bottom) d 5 15.
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misspecifications (e.g., overestimation of correlation

strength and overestimation of marginal variances) can

partially or fully cancel out. But even if it has been as-

sured that the marginal distributions are calibrated, the

pth absolute moment of component differences does in

general not fully characterize themultivariate dependence.

How good is the VS-p in distinguishing forecasts that are

entirely correct (i.e., have been generated by the same

process as the observations) from forecasts that have

correct means, variances, and correlations, but have been

generated by a completely different mechanism? It can

be expected that the answer depends on the particular

generating process, and we are careful to make general

claims as to this issue. Yet it is instructive to study at least

one such example. We simulate observations as follows:

1) Draw a randomnumber y from a Poisson distribution

with parameter l5 8.

2) Draw y locations t1, . . . , ty from a uniform distribu-

tion on the interval [0, 16].

3) Denoting by (�)1 the maximum of 0 and the function

in brackets, define

yt 5

ffiffiffiffiffi
15

8

r
�
y

i51

[12 (t2 ti)
2]1, t5 1, . . . , 15. (6)

One can think of t1, . . . , ty as storm centers that have an

influence on all locations within a radius of one unit,

expressed by the influence function (12 x2)1. The dif-

ferent local storms are then added up to the final out-

come. This process is a special case of a so-called shot

noise process. Using results from Matérn (1986, chapter
3.3), one can show that with the specific choices made

above y is a sample of a stationary time series with meanffiffiffiffiffiffiffi
5/3

p
, variance 1, and correlation function:

corr(Yi,Yj)5

 
11

3ji2 jj
2

1
ji2 jj2

4

!�
12

ji2 jj
2

�3

1

.

We now compare forecasts that were generated in the

same way as this shot noise observation process with

forecasts that have the same means, variances, and

correlations, but were simulated from a multivariate

Gaussian distribution.An illustration of one sample path,

respectively, on the full interval [1, 15] is provided

in the supplemental material to this paper. The results of

this comparison are depicted in Fig. 4. A few conclusions

are very consistent with what we already observed be-

fore. The discrimination ability of the ES is rather poor,

and the DSS favors the incorrect model as a result of

insufficient approximation of mF and SF , even in the

case wherem5 100. Recall that the DSS depends on the

predictive distribution only through its component

means and variances, and intercomponent correlations,

so for a perfect approximation of mF and SF we would

expect the DSS to be indifferent toward the particular

forecast generation process. The same is true for the

VS-2, while the effect of the generation process on the

VS-1 and VS-0.5 is not quite as obvious. For the first

time, we observe problems related to the finite sample

representation of the predictive distribution also with

FIG. 3. As in Fig. 1, but for forecasts with (left violet boxplots) correct and (right dark blue boxplots) incorrect correlation structure

where the correct correlation function is that using (top) model (i) or (bottom) model (ii) in section 3c ; and the incorrect correlation

function is, in both cases, the exponential model in (5) with r5 3.

1328 MONTHLY WEATHER REV IEW VOLUME 143



the VS-2 and VS-1. The good discrimination ability of

the VS-0.5 may be based on several factors. On the one

hand, the 0.5th absolute moment of differences seems

to be very informative about the generating process.

It is not clear though, whether this is specific to the

present example or whether this is true in general. On

the other hand, we have already observed that the

choice p5 0:5 entails less sampling variability compared

to larger values, and this likely contributes to the favor-

able performance of the VS-0.5 in the present example

as well.

e. Sensitivity of the variogram score of order p to the
choice of weights

So far, we have always chosen the weights in (3)

proportional to the inverse distance between the com-

ponents. We have argued in section 2 that such a choice

is reasonable whenever there is some natural notion

of distance, and correlations between components

are expected to decrease with this distance. Yet, this

choice is quite ad hoc, and it is natural to ask how

sensitive the discrimination ability of the VS-p is with

regard to the choice of weights, and if other choices

yield a similar or even better performance. To answer

this question, we repeat the first two experiments, this

time considering only the case where d5 15 and

m5 20. We restrict our attention to the VS-0.5, but

study two alternative weighting schemes: no weighting

at all (i.e., wij [ 1) and a kind of localization scheme

where wij5 [12 (ji2 jj/3)2]1 (i.e., pairs of components

more than three units apart are not considered at all). The

results in Fig. 5 are as one might have expected. Mis-

specifying the range parameter in our exponential cor-

relation model in (5) affects correlations between all

pairs of components. As pointed out in section 2, close

by, strongly correlated components have a more favor-

able signal to noise ratio, and so it is not surprising that

the localization weighting scheme has the best, and the

unweighted VS-0.5 has the worst discrimination ability.

The same conclusion holds in the experiment where the

correlation function of the observations has a periodic

component. Even at short lags, this correlation functions

differs quite strongly from the simple exponential

model, and focusing on close-by component pairs,

therefore, benefits the score’s discrimination ability.

Differences between the long-range correlation model

and the exponential model, on the contrary, are more

noticeable for pairs of components that are farther

apart, and hence the unweighted VS-0.5 performs best.

Overall, we conclude that if prior knowledge about cor-

relations is available, some sort of localization scheme

with appropriately chosen cutoff radius should be used. In

the absence of such knowledge, the inverse distance

weighting scheme seems to be a good compromise. We

FIG. 4. As in Fig. 1, but for forecasts of (left violet boxplots) correct (shot noise) type and (right dark blue boxplots) incorrect (Gaussian)

process type.

FIG. 5. VS-0.5 for three different component weights—unweighted, inverse distance, and localized—for the case where d5 15 and

m5 20. The three plots on the left are for the correlation strength experiment with too weak, adequate, and too strong correlations being

represented by light blue, violet, and dark blue boxplots, respectively, and those on the right are for the correlationmodel experiment with

correct forecasts being represented by violet and incorrect forecasts being represented by dark blue boxplots.
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finally note that even the unweighted score permits better

identification of misspecified dependence structures than

the ES.

f. Generalizations of the variogram score of order p

At the end of section 2, we pointed out that the VS-p

defined in (3) can be viewed as a special case of

a larger class of scoring rules which transforms both

forecast and observation vectors to d2-dimensional

vectors of weighted, powered, absolute differences

between the components of the original vectors. Here,

we fix p5 0:5 and define the weight vector ~w of the

transformation g
0:5,~w

through ~wij 5 1/
ffiffiffiffiffiffiffiffiffiffiffiji2 jjp

. With

these choices, the VS-0.5 with inverse distance

weights is (up to a constant factor) the same as the

MSE of the componentwise means of the transformed

forecasts with respect to the transformed observa-

tions. As alternative scores, we consider the mean

absolute error (MAE) of the componentwise medians

of the transformed forecasts, the mean continuous

ranked probability score (MCRPS) over all compo-

nents of the transformed forecasts, and the ES of the

vector of transformed forecast. Figure 6 shows results

for the setting of our correlation model experiment in

section 3c with d5 15 and m5 20, where the obser-

vation is generated according to section 3c model (i)

and (ii), respectively, and the scores are used to dis-

tinguish correct forecasts from those that erroneously

use an exponential correlation model. The main point

to note is that all scores are able to distinguish the

correct from the incorrect correlation model, showing

that it is really the transformation g
0:5,~w

, rather than

the particular score applied to the transformed vec-

tors, that is crucial for detecting misspecified de-

pendence structures. With the MAE and MCRPS

being particular discriminative in the example with

long-range dependence and the ES faring best in the

example with a periodic component, there is no clear

ranking among the different scores. The MSE, the

score that corresponds to the VS-0.5, demonstrates

good discrimination ability in both examples. Its

preference over the other options is by no means im-

perative, but it seems to be a good compromise, and

thus a reasonable standard choice.

4. Evaluating multisite wind speed forecasts

We finally apply our score in a data example to

evaluate and compare statistically calibrated, proba-

bilistic forecasts of wind speeds at five major wind park

locations in the state of Colorado. Specifically, we

consider the period from 1 January to 31 December

2013, use 80-m wind speed forecasts from the second-

generation GEFS reforecast dataset (Hamill et al.

2013) and the corresponding reanalyses for both cali-

bration and verification. The reforecast ensemble has

11 members and was initialized once daily at 0000 UTC.

We study 80-m wind speed predictions with lead

times of 24, 48, and 72 h at the grid points that are

closest to

d Cedar Point Wind Farm (250MW, operational since

2011);
d Cedar Creek Wind Farms I and II (550MW, opera-

tional since 2007/10);
d Peetz Table Wind Energy Center (430MW, opera-

tional since 2001/07);
d Colorado Green Wind Farm (162MW, operational

since 2003); and
d Cheyenne Ridge Wind Project (under development,

project size 300–600MW).

As explained above, the ensemble forecasts

f1s, . . . , f11s, s 2 S , where S denotes the set of the five

wind park locations, can be interpreted as a sample from

the multivariate distribution that describes the simulta-

neous predictions. The raw model output, however, of-

ten suffers from systematic biases and typically fails

to fully represent prediction uncertainty (Hamill and

Colucci 1997). To calibrate the marginal predictive

FIG. 6. Different scores that result from applying the ES, MAE, MSE, and MCRPS to the g
0:5,~w

-transformed forecast and observation

vectors. The two left and right boxplots within each panel correspond to the experiments where the observation is generated according to

section 3c models (i) and (ii), respectively, with correct forecasts colored in violet and incorrect forecasts colored in dark blue.
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distributions, we follow Thorarinsdottir and Gneiting

(2010) and fit a heteroscedastic regression model to past

forecast–observation pairs that turns the ensemble mean

f s and the ensemble variance S2s at location s into a

predictive truncated normal distribution,

Ys j f1s, . . . , f11s;N 0(as 1 bsf s, cs 1 dsS
2
s ) , (7)

for the observed wind speed Ys at s. A separate model is

fitted for each location, each forecast lead time, and each

month of the verification period from 1 January to 31

December 2013. For each month, forecasts and obser-

vations from the same, the preceding, and the sub-

sequentmonth in the years 2010, 2011, and 2012 are used

as training data for the model fitting procedure [for de-

tails about that procedure we refer to Thorarinsdottir and

Gneiting (2010)]. Once the parameters as, bs, cs, and ds
for eachmonth, location, and lead time are determined,

a predictive distribution for the day under consider-

ation can be obtained by plugging the corresponding

ensemble mean and variance into (7). Diagnostic plots

(not shown here) confirm that the univariate probabi-

listic forecasts obtained in this way are calibrated (i.e.,

they are unbiased and represent the prediction uncertainty

adequately).

The postprocessing scheme just described only ad-

dresses the marginal distributions. In our particular ex-

ample, however, power network operators might be

interested in whether low wind speeds (and hence low

wind power production) at one wind park will be com-

pensated by higher wind speeds at the other wind parks,

or whether wind speeds will be low at all wind parks

simultaneously. To account for this multivariate aspect

of our prediction problem and address correlations be-

tween the forecasts at the different locations, we use the

ensemble copula coupling (ECC) technique (Schefzik

et al. 2013), which turns the five marginal predictive

distributions back into an ensemble ~f 1s, . . . ,
~f 11s, s 2 S

that has the same rank correlation structure as the

original ensemble but calibrated margins. Specifically, if

Fs denotes the predictive, truncated normal CDF at lo-

cation s, calibrated ensemble forecasts are obtained via

~f 1s 5F21
s

�
rs(1)

12

�
, . . . , ~f 11s 5F21

s

�
rs(11)

12

�
, s 2 S , (8)

where Fs
21 is the predictive quantile function at s and

rs(k)5 rank(fks), k5 1, . . . , 11. With other words, the

original forecasts are replaced by quantiles (this par-

ticular way of sampling is referred to as ECC-Q) of the

calibrated marginal distributions in such a way that

the ordering of the ensemble member forecasts re-

mains unchanged. In this way, the (flow dependent) rank

correlation information of the raw GEFS ensemble is

preserved.

Does this preservation of rank correlations really

yield noticeably better multivariate forecasts than

a sampling scheme in which rs is a random perturbation

of the set f1, . . . , 11g (i.e., no spatial correlations) or

one in which rs is the identity (i.e., maximal spatial de-

pendence)? We compute those alternative, marginally

calibrated ensembles (‘‘random-Q,’’ ‘‘ordered-Q’’) as

well and use the ES, theVS-0.5, and theVS-1 to evaluate

and compare the correspondingmultivariate wind speed

forecasts with those of the raw and ECC-Q ensemble.

Again, we use inverse distance weights for the VS-p

where distance is now the geographical distance (in

kilometers) between the wind farm locations. Since in

section 3 the empirical DSS turned out to be unreliable

for small ensemble sizes and the VS-2 was always less

discriminative than the VS-0.5 and VS-1, only the two

latter are considered here as alternatives to the ES. In

order to facilitate the comparison between the three

different scores, we turn them into skill scores with re-

spect to the raw ensemble. That is, instead of the energy

score ES* for method ‘‘*’’ we state the energy skill score

ESS* = 1 2 ES*/ESens, which measures the increase in

predictive performance compared to the raw ensemble

(likewise for the variogram scores). All skill scores in

Table 1 agree that ECC-Q yields the most skillful,

multivariate probabilistic forecasts. The ordered-Q en-

semble, for which wind speeds are simultaneously low or

high at all locations, is less skillful than the uncalibrated

ensemble; the corresponding multivariate structure is

clearly inappropriate. The comparison between ECC-Q

and random-Q is more interesting, and confirms the

above findings about the respective sensitivity of the ES

and the VS-p to miscalibration. The ESS yields a some-

what clearer distinction between the raw and the ECC-Q

ensemble, which differ in their marginal distribution,

but have the same rank correlations. The random-Q

TABLE 1. Skill scores of the ECC-Q, random-Q, and ordered-Q ensembles with respect to the raw ensemble.

Lead time 24 h Lead time 48 h Lead time 72 h

ESS VSS-0.5 VSS-1 ESS VSS-0.5 VSS-1 ESS VSS-0.5 VSS-1

ECC-Q 0.184 0.171 0.151 0.119 0.119 0.096 0.063 0.036 0.027

Random-Q 0.175 0.047 0.088 0.108 20.020 20.017 0.051 20.087 20.063

Ordered-Q 20.284 20.147 20.062 20.420 20.231 20.145 20.493 20.461 20.299
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ensemble, however, scores almost as well as the ECC-Q

ensemble, despite its doubtful assumption of spatial in-

dependence. Under the VS-0.5 and VS-1, on the contrary,

the random-Q ensemble fares distinctly worse than the

ECC-Q ensemble, and has even negative skill for lead

times larger than 24h. Those two ensembles yield identi-

cal forecasts at each location individually, but their com-

ponents have different rank correlations. Again, the VS-p

can detect those differences more clearly.

5. Discussion

In their recent review on probabilistic forecasting,

Gneiting and Katzfuss (2014, p. 146) note as one out of

eight key issues for future research that

‘‘There is a pressing need for the development of
decision-theoretically principled methods for the evalu-
ation of probabilistic forecasts of multivariate variables.’’

When the focus is on the correlation structure and the

mean and covariance matrix of the predictive distribu-

tion are given in closed form, the DSS is an excellent

choice. The examples in section 3 show, however, that

the usage of this score can be problematic when the

probabilistic forecasts are represented by an ensemble

of limited size, and empirical versions of the predictive

mean vector and covariance matrix have to be used. In

spite of being proper, the DSS can then lead to entirely

wrong conclusions about predictive performance,

which suggests that this scoring rule is far from being

fair in the sense of Fricker et al. (2013). In this paper,

we have presented a new class of multivariate scores

based on powered differences between pairs of com-

ponents of the multivariate quantity, denoted as

variogram scores of order p (VS-p). In our simulation

studies the VS-p was also negatively affected by the

sampling error due to representing the predictive dis-

tribution by a (possibly small) ensemble. In the ma-

jority of cases, however, it led to the correct

conclusions about predictive performance, which

suggests that it is much closer to being fair than the

DSS. Moreover, it is more successful than the ES

in distinguishing forecasts with different correlation

structures. Three different choices of powers p were

studied for the VS-p, and it was found that the best

results are obtained with p5 0:5, while p5 2 was

clearly suboptimal. Would a VS-p with p, 0:5 have

even better properties? At least for Gaussian pre-

dictive distributions, a square root transformation is

likely already the best choice since the distribution of

jXi 2Xjj0:5 is almost perfectly symmetric and thus has

much better sampling properties than the strongly skewed

distribution that comes with the choice p5 2 (Cressie and

Hawkins 1980). If the predictive distribution itself is al-

ready skewed, however, then smaller powers may indeed

be favorable to obtain a near-symmetric distribution of

jXi 2Xjjp.
In section 4, we considered a data example with sta-

tistically postprocessed wind speed forecasts. Scoring

rules in general, and the VS-p in particular, may how-

ever also be useful diagnostic tools in the development

process of ensemble prediction systems. In the context

of data assimilation, for example, it is important that the

ensemble adequately represents the variances and co-

variances between different variables at different loca-

tions. Comparing different ensembles via scoring rules

rather than empirical covariances (averaged over a cer-

tain time period) has the advantage that the former

evaluate every time point separately and average the

scores rather than covariances. This is more adequate if

those covariances are flow dependent. Moreover, if the

scores are normalized in a reasonable way (for the VS-p

this could be done by requiring that the weights sum to

one on each day), even the space dimension may change

over time, and averaging the corresponding scores

would still make sense. If the distribution of the ob-

servation errors is known, those can be taken into account

by simulating a sample �il, i5 1, . . . , d, l5 1, . . . , M of

such errors and adding them to the ensemble forecasts. The

empirical version of the VS-p then becomes

Sg
p
(F, y)5 �

d

i,j51

wij

 
jyi 2 yjjp2

1

mM
�
m

k51
�
M

l51

jf (k)i 1 �il 2 f
(k)
j 2 �jljp

!2

,

and by choosing M—the number of simulated observa-

tion error vectors—large enough, one can reduce at least

part of the additional variability that is introduced into

the score. It remains to be seen if the signal-to-noise

ratio in those applications is large enough for this score

to be still sufficiently discriminative.

We think that the class of VS-p proposed here is

a useful contribution to address the above-mentioned

research issue of decision theoretically principled

methods for multivariate forecast evaluation. It has

certain limitations, resulting from the fact that is not

strictly proper as discussed in section 2. Given the

1332 MONTHLY WEATHER REV IEW VOLUME 143



strong increase in the number of degrees of freedom

with the dimension of the quantity to be forecast, it is

unlikely, however, that there exists a single multivariate

score that serves all purposes. We strongly recommend

that several different scores be always considered before

drawing conclusions. Some of the limitations of the VS-p

can be addressed by studying the ES (which is more

sensitive to misspecifications of the predictive mean and

less affected by the finite representation of the predictive

distribution) or univariate scores for the marginal dis-

tributions alongside with our VS-p. Focusing on differ-

ences between components is probably the most natural,

but by no means the only possible transformation of the

multivariate quantity that leads to a multivariate score

that is sensitive to correlations between components. In

some applications, studying composite quantities like

minima, maxima, or averages over several locations or

lead times (Berrocal et al. 2007; Feldmann et al. 2015), or

indexes that involve multiple quantities (Wilks 2014) is

a natural way to turn multivariate quantities into uni-

variate ones that can be evaluated by standard univariate

scores. This way, specific (and practically relevant) as-

pects of the multivariate predictive distribution can be

evaluated, and this sort of verification is another rec-

ommended supplement to general purpose multivariate

scores like the ES or the VS-p presented here.
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